25x-40x-16=25x^2-20x-20x-16+10x-30

Simple and best practice solution for 25x-40x-16=25x^2-20x-20x-16+10x-30 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 25x-40x-16=25x^2-20x-20x-16+10x-30 equation:



25x-40x-16=25x^2-20x-20x-16+10x-30
We move all terms to the left:
25x-40x-16-(25x^2-20x-20x-16+10x-30)=0
We add all the numbers together, and all the variables
-15x-(25x^2-20x-20x-16+10x-30)-16=0
We get rid of parentheses
-25x^2-15x+20x+20x-10x+16+30-16=0
We add all the numbers together, and all the variables
-25x^2+15x+30=0
a = -25; b = 15; c = +30;
Δ = b2-4ac
Δ = 152-4·(-25)·30
Δ = 3225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3225}=\sqrt{25*129}=\sqrt{25}*\sqrt{129}=5\sqrt{129}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-5\sqrt{129}}{2*-25}=\frac{-15-5\sqrt{129}}{-50} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+5\sqrt{129}}{2*-25}=\frac{-15+5\sqrt{129}}{-50} $

See similar equations:

| 6=20n | | h=217-0.85 | | -283=5(-7-6x)-x | | -3(4x+4)=9x+3 | | -10(4y+7)=-8y | | 216=6w^2 | | 1=8x-12 | | |x+6|=2x-1 | | 25x^2-40x-16=25x-20x-20x-16+10x-30 | | -3(1+7x)-x=12-7x | | 11x+10x=13x+1 | | 7f–3=39 | | 7x-2/2=4x-6 | | 14x+9+4x=27+8x | | 8+x/2=12 | | -86=-4(4x+8)+7x | | v+22=32 | | 4+3y=6y–5 | | 4x+9+4x=27+8x | | 5×(b+3)=25 | | 11k–5=61 | | 7b-3=-3b+5-46 | | 36=24+v | | H(a)=217-0.85a | | 9-(2y+3)=4y | | 8n^2+8n+234=6 | | 3^{5x}+1=10 | | 1.4m-4.5/1.5=8.2. | | 2.n-10=20 | | 5=2w–3 | | +2x2+3x-2=0 | | 2^3x+1=5^4x-3 |

Equations solver categories